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Abstract--A number of studies have supported the hypothesis that fault displacement is systematically related to 
fault size by a power law. The relationship is important for estimating bulk strain in faulted terrains. However, 
the exponent of this relation has been the subject of some dispute: in particular as to whether the exponent is unity 
(i.e. a linear relationship exists between displacement and length) or larger. The techniques used to determine 
the exponent have been inconsistent and far from rigorous in their application of statistical tests and terminology. 
We have re-analysed several of the data sets using more careful techniques. We find that the power law with an 
exponent of unity explains most sets of data when analysed separately. We also applied a weighted joint 
regression analysis to combined data covering nearly 6 orders of magnitude. The best estimate of the common 
slope (slope in log-log space = exponent of a power law in linear space) is 0.946 with a standard error of 0.0426. 
Statistical tests confirm that this exponent is consistent with a value of unity, implying a linear relationship 
between fault displacement and length within each data set. However, the different data sets have varying 
intercepts in the log-log space, indicating differing slopes for the linear relation. 

INTRODUCTION 

It has been suggested that the relationship between 
displacement D and length L in a population of bounded 
faults in continental areas is of the form 

L c 
O - (1) 

P 

apart from random noise in the measurements of D 
andIor L, where c and P are constants for a particular 
data set. This may also be written 

l o g D =  K +  c l o g L ,  K = - l o g P .  (2) 

The relationship is important, since when combined 
with a frequency-length relation, it allows an estimate of 
the total strain in a region of faulted rock using a 
sampling of fault sizes (Scholz & Cowie 1990, Marrett & 
Allmendinger 1991, 1992, Walsh et al. 1991, Walsh & 
Watterson 1992). Furthermore, it provides primary evi- 
dence regarding the mechanics of fault initiation and 
growth (Watterson 1986, Cowie & Scholz 1992a, Burg- 
mann et al. 1994). 

Previous studies have generally accepted the power- 
law hypothesis and have focused on determining the 
parameters of the power law. It has been proposed that a 
common exponent c, at least, may apply, but various 
values have been suggested, e.g. c = 1.0 (Cowie & 
Scholz 1992b), c = 1.5 (Marrett & Allmendinger 1991) 
or c = 2.0 (Watterson 1986, Walsh & Watterson 1988). 

In this study we use modern regression techniques to 
re-examine the evidence for and against such a relation- 
ship. We use 11 data sets used in previous analyses. In 
particular, we investigate whether or not a common 
value of c applies for all 11 data sets, and if so, whether 
this common c is consistent with any of the competing 
hypotheses. 

We assume that, given a fault of length L, the corre- 
sponding observed maximum displacement D is given by 
the equation 

l o g D =  K + c l o g L  + e ,  (3) 

where e denotes a random error. In the population of 
faults, the random error e is assumed to have an average 
value of zero, Each individual error derives from two 
components: (i) the 'pure-error' or 'within-fault' vari- 
ability which relates to the sampling technique, and is 
exemplified by fig. 2 of Cowie & Scholz (1992b); and (ii) 
a lack-of-fit component, which recognizes that equations 
(1) and (2) are only idealized formulae. These two 
components of variability can be estimated from those 
instances of multiple Ds for the same L. 

In the model expressed by equation (3) the random 
error in the data is additive on the logarithmic scale, i.e. 
multiplicative on the original scale. This is a necessary 
and reasonable assumption; it means that with data 
covering several orders of magnitude, the random errors 
remain in the s a m e  p r o p o r t i o n ,  e.g. 100 m in 1 km and 10 
cm in 1 m. 
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We make the further assumption that the lengths L of 
the faults can be determined to a greater accuracy than 
the measurement of maximum displacement D. This has 
the important consequence that it is valid, by a con- 
ditioning argument (Cox & Hinkley 1974, Chap. 2), to 
apply standard least-squares regression methods to the 
estimation of the parameters K and c in equation (3), 
regardless of how the faults were sampled. 

The modern regression approach used here has 
further advantages. It is possible and advisable to group 
all the data together and estimate the common value of c 
from these combined data. Various hypotheses of inter- 
est can be tested automatically, using standard statistical 
tests, and the total variability of the data can be par- 
titioned up into various components of interest. Finally, 
all the assumptions of the model can be tested. 

DETAILS OF THE ANALYSIS 

We performed the analysis on 11 data sets consisting 
of: (i) eight of the sets used by Cowie & Scholz (1992b), 
excluding the MacMillan data (for the reasons discussed 
by them); and (ii) three additional sets digitized from fig. 
2 of Watterson (1986). The original sources are indi- 
cated in Table 1. We used the statistical computing 
package MINITAB (Release 7.2, Minitab Statistical 
Software, 3081 Enterprise Drive, State College, PA 
16801-2756, U.S.A.)  for all the numerical analyses. 

One-at-a-time 

With 11 groups of data (see Table 1) we use a more 
general version of equation (3), namely 

log Dij = Ki + c~ log Lij + eli, (4) 

where (Dip Lij) represents thej- th pair of D - L  measure- 
ments in the i-th group, and K i and ci denote the 
intercept and slope of the log D - log L line for the i-th 
group. Within the i-th group, the error terms e;j are 
assumed to follow a Normal or Gaussian distribution 
with a standard deviation cry. The assumption of norma- 
lity is not critical, and will be tested anyway. 

The 11 separate regression lines specified by the 
model described by equation (4) were fitted one-at-a- 
time, yielding results shown in Table 1. 

In nine of the 11 groups, the estimated slope di was 
consistent with Cowie & Scholz's (1992b) hypothesis of 
c = 1 as judged by the standard t-statistic which counts 
how many standard errors the estimate is from the 
hypothesis. A value of t between - 2  and +2 means that 
there is no statistical evidence against the hypothesis 
that c = 1, at the 5% significance level. The t-test 
automatically takes account of the relatively small num- 
ber of observations within each group, the scatter about 
the fitted line, and the possibly unequal spacing of the 
log Ls within the group, The experimental lack-of-fit test 
(XLOF) (Burn & Ryan 1983) in MINITAB also showed 
that within each group there was no significant non- 
linearity in the plot of log D against log L (Clark & Cox 
1995). 

Some faults in group 8 (Walsh & Watterson 1987) 
contained measurements across multiple profiles. An 
analysis of these repeated measurements showed that 
within-fault variation of the D - L  relationship is not as 
serious a problem as fig. 2 of Cowie & Scholz (1992b) 
might suggest. In addition the related 'pure-error '  lack- 
of-fit test confirmed that the assumption of a linear 
model (3) was satisfactory (Clark & Cox 1995). 

Cowie & Scholz (1992a) suggest that c = I is consist- 
ent with control of fault formation by a fracture mech- 
anics mechanism with residual friction. Those data 
which do not have c -- 1 may be controlled by qualitat- 
ively different mechanics. For example, the Opheim & 
Gudmundsson (1989) data are from surface fractures in 
lava flows in Iceland, so these may have been influenced 
by thermal shrinkage, causing a deviation from the 
elastic relation. 

The residual standard deviations (Oi in column 7 of 
Table 1) are clearly very different, as confirmed by 
Bartlett 's test (Bartlett 1937) yielding a highly significant 
T = 41.5 on 10 degrees of freedom (d.f.). There was no 
clear pattern in these residual standard deviations, as a 
function of either fault type or mean fault length. Any 
further statistical analysis based on the combined data 
will therefore need to take account of this heterogeneity 
of variance by appropriate weighting. 

Table 1. Summary of one-at-a-time analyses---11 groups, n = number of faults, di = estimate of power-law exponent c, SE(d/) = standard error 
of this estimate, t = standard t-statistic with respect to hypothesis that c = 1, Oi = residual standard deviation of the samples around the best-fit 

line and W = weight factor used in the subsequent combined analysis 

i Source n ~i SE((~i) t Oi W 

1 Elliott (1976) 29 1.0143 0.08452 0.17 0.1763 0.175 
2 Krantz (1988) 16 1.4439 0.2270 1.96 0.2776 0.250 
3 Muraoka & Kamata (1983) 15 0.9058 0.1915 -0.49 0.2217 0.250 
4 Opheim & Gudmundsson (1989) 7 0.6666 0.0628 -5.31 0.0532 --  
5 Peacock (1991) 20 0.3850 0.0999 -6.15 0.1775 --  
6 Peacock & Sanderson (1991) 20 0.8209 0.2024 -0.88 0.3224 0.330 
7 Villemin et al. (1995) 26 0.875 0.0643 -1.94 0.1735 0.175 
8 Walsh & Watterson (1987) 34 1.0846 0.2144 0.39 0.3480 0.330 
9 North Derby (Watterson 1986) 18 0.6287 0.2082 -1.78 0.2542 0.250 

10 Barnsley (Watterson 1986) 18 0.8280 0.1640 -0.99 0.1685 0.175 
11 Mid-ocean (Watterson 1986) 7 1.1290 0.1299 0.99 0.1410 0.175 
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Fig. 1. Results of the combined analysis of nine data sets (lines), with the source data (symbols). Group numbers as in 
Table 1. 

Table 2. Analysis of variance for combined weighted regressions 

Source of variation 

Degrees of freedom Sum of squares Mean square = S.S./ 
d.f. 

(d.f.) (S.S.) (M.S.) 

Regression 1 9354.3 
Differences between intercepts 8 577.6 72.2 
(assuming common slope) 

Residual error: 173 178.65 1.03266 
Differences between slopes 8 12.76 1.595 
Lack of fit to parallel lines 148 152.34 1.029 
Pure error (within faults) 17 13.55 0.797 

Total 182 10,110.5 

Combined analysis 

Clearly, the estimates of c in groups 4 and 5 are 
different from all the rest. We now use modem re- 
gression analysis to consider whether the combined data 
in the remaining nine groups are consistent with a 
common value of c (parallel lines across groups), or even 
a common K as well (a single line for all groups). 

In weighted regression analysis we pool the nine 
groups into a super-group of 183 observations while still 
allowing the subsets to have different scaling factors P 
and different within-group precision. This is achieved as 
follows. The data sets are assigned to three groups on the 
basis of their residual standard deviations, and each of 

the subsets weighted as shown in the last column of 
Table 1, based on the corresponding average residual 
standard deviations. This implicitly rescales all the data 
so that the subsequent analysis becomes essentially 
scale-free. With this rescaling, the residual standard 
deviation for any satisfactory model should be close to 
unity. 

Weighted least-squares regression was used to fit: (i) 
nine parallel lines (with different intercepts in each 
group---Fig. 1); and (ii) a single line to the combined 
data from all groups. 

The results of our combined analysis are summarized 
in the conventional 'analysis of variance' table (Table 2). 
This enables various hypothesis of interest to be tested 
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Table 3. Est imates  of  intercepts under  parallel-line method  (see Table 1 for sources of  data), n = number  of  faults in group, 
/~ = est imate of  intercept in log-log space, SE(/~) = s tandard error of estimate,  P = estimate of  scaling factor in power law 
(P = 10r), PL and P u  = lower and upper  95% confidence bounds on the estimate,  P* = estimate of  scaling factor derived 

from Cowie & Scholz (1992b) where P = 1/y 

i n /~ SE(/~) P PL Pu  P* 

1 29 - 1.1074 0.0837 12.11 7.1 15.3 16.7 
2 16 -2 .2983 0.0638 198 148 267 143 
3 15 -2 .100  0.1424 126 65 243 83.3 
6 20 -2 .1972 0.1237 157 89 278 111 
7 26 - 1.4730 0.0389 30 25 35 34.5 
8 34 -2 .3235 0.0576 211 162 275 166.7 
9 18 -2 .5569  0.0600 360 273 475 - -  

10 18 -1 .9825 0.0423 96 79 117 - -  
11 7 -2 .0332  0.0807 108 74 157 - -  

Note: 95% confidence limits = 10 (r±2°sE). Formal significance test for differences between the est imated Ks should take 
account of  the correlations between these estimates. (See Clark & Cox 1995 for details.) 

simply by comparing the mean squares (last column). 
The lower part of the table confirms that each data set is 
close to a straight line in log-log space. In the top part, 
the very large mean square of 72.2 show that the com- 
bined data are not consistent with a single-line fit across 
all groups, in contrast to Watterson (1986) and Marrett 
& Allmendinger (1991). However, the data are quite 
consistent with the hypothesis of parallel lines with a 
common slope for nine of the 11 groups. See Clark & 
Cox (1995) for further discussion and formal significance 
tests. 

The best (unbiased) estimate of this common slope is 
= 0.946, with a standard error of 0.0426. This estimate 

of the exponent c is clearly consistent with Cowie & 
Scholz's (1992b) hypothesis that c = 1 (t = -1.34), and is 
inconsistent with the alternative hypotheses that c = 1.5 
(t -- 13.0) (Marrett & Allmendinger 1991) and c = 2 
(t -- 24.7) (Watterson 1986, Walsh & Watterson 1988). 

The analysis also produced estimates of the scaling 
factor P in equation (1) together with approximate 95% 
confidence limits (Table 3). We found that these esti- 
mates varied widely, which would be consistent with the 
different data sets involving different materials and 
geological histories. However, the sets covering larger 
faults tend to have lower values of P (Elliott 1976, 
Villemin et al. 1995) consistent with the observed tend- 
ency between data sets which has previously led to the 
grouping of all the data around a single line with a slope 
greater than unity (Walsh & Watterson 1988, Marrett & 
Allmendinger 1991). This is an important observation, 
though the explanation is not clear. As noted by Cowie 
& Scholz (1992b) it is at least probable that there will be 
a consistent change when the faults become so large that 
they are no longer bounded in three dimensions within 
their host brittle layer (e.g. Pacheco & Scholz 1992, 
Davy 1993, Westaway 1994). 

In Table 3 we also show P* which is the reciprocal of 
~(= 1/P for c -- 1) from Cowie & Scholz's (1992b) table 1 
for comparison. In most cases these fall within the 
bounds suggested by our analysis. 

TESTING ASSUMPTIONS 

Binning 

If the measurement of either L or D is subject to 
rounding, which is common particularly if the variables 
are determined by conversion of seismic magnitudes, 
then the data may be considered to be grouped or 
'binned'. This can have an effect on parameter esti- 
mation (Fryer & Pethybridge 1972). Here binning does 
not appear to be severe, so we have not applied any 
correction. 

Measurement errors 

However, the lengths of faults are probably subject to 
errors of measurements of the order of 10-20%. We 
tested the effect of this on the analysis empirically. We 
added random Gaussian noise to the log-lengths, with 
standard deviation 0.04 (i.e. log 1.1) which is equivalent 
to working with data in which roughly a third of the 
lengths would be in error by at least 10%. A repeat of the 
entire regression analysis with these jittered lengths 
produced exactly the same conclusions as the first analy- 
sis, with only minor changes to estimated parameters. 
Our results and conclusions appear to be robust under 
fairly realistic imprecision in the lengths. 

Error distribution 

We tested the distribution of the random errors e 
using normal quantile plots (Filliben 1975) and found 
the assumption that they are Gaussian-distributed is 
reasonable. We also found random scatter in residual 
plots, confirming that the parallel lines model is a good 
fit to the data (Clark & Cox 1995). 

Our assumptions regarding the random errors e in 
equations (3) and (4) are not critical however, since the 
t-values for c are so clear-cut. The conclusions, both 
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qualitative and quantitative, appear to be insensitive to 
moderate levels of inaccuracy in the lengths. 

NOTES ON REGRESSION ANALYSIS AND 
STATISTICAL TOOLS 

Correlation coefficient 

Some authors use the correlation between log D and 
log L, as measured by the least-squares correlation 
coefficient, r, to indicate the reliability of their estimate 
of c. This is incorrect, since although the correlation 
coefficient measures how close the data are to a straight 
line, it says nothing about the slope of that line. In 
particular, the correlation coefficient may fail to indicate 
systematic variations from linearity. That is much better 
tested by examining the residuals for a systematic pat- 
tern, or by methods such as the XLOF test used here 
(Clark & Cox 1995). In particular, an undetected non- 
linearity makes extrapolation of the relation to estimate 
derived parameters, such as bulk strain, very dangerous. 
Formal tests of significance for the correlation coef- 
ficient are available only for Gaussian distributions. 
Thus, even though it is possible to compute a correlation 
coefficient for an arbitrary data set, even a high value 
may be misleading and give a false sense of confidence. 

Effect o f  sample distribution on parameter estimates 

Cowie & Scholz (1992b), note that within a given 
region, the lengths L of faults may follow a power-law 
distribution, with many small faults but relatively few 
large ones. They suggest that this over-representation of 
small faults renders 'a fit to the data statistically biased'. 
This is incorrect since this least-squares analysis is con- 
ditional on the Ls actually observed. Provided only that 
the random errors e in (3) and (4) have zero mean, then 
the least-squares estimates of all the cs and Ks are not 
biased (Kendall & Stuart 1973, section 28.14). 

However, the precision of these least-squares esti- 
mates does depend on the configuration of the Ls in the 
actual sample. In general, the least-squares estimates 
become less precise as the distribution of the log-lengths 
becomes more skewed (Clark & Cox 1995). Fortun- 
ately, the configuration in our combined data is almost 
uniform, due to combining data-sets each covering only 
a part of the total range of the Ls. 

Cowie & Scholz (1992b) also suggest that "each data 
set spans . . .  too short a range" to give a reliable 
estimate of the exponent c. While the standard error of 
from any small data set could be high in absolute terms, 
such an estimate is always unbiased, and in most cases 
the estimate of the slope is more accurate than the 
original measurements (Clark & Cox 1995). In any case, 
by fitting parallel lines to the combined data, our analy- 
sis utilizes 183 lengths and displacements, ranging over 6 
orders of magnitude, to reliably estimate the exponent c. 

Testing the hypotheses 

Finally, while intuitively appealing, the method used 
by Cowie & Scholz (1992b) to test the competing hy- 
potheses c = 1.0 and c = 1.5 (see their table 1) has 
significant flaws. First, it takes no account of the differ- 
ing sample sizes, or of the random noise in the data. 
Also, since the P-values for c = 1.5 in their table 1 are 
not actually estimated from the D - L  data, the increase 
in variance which they found might be due to having the 
wrong value of P. Both of these objections are overcome 
by the straightforward t-tests used in our analysis. 

CONCLUSIONS 

We have considered the problem of whether fault 
displacements and lengths are related by a power law, 
and what the value of the power-law exponent is. Our 
study applied modern regression techniques to perform 
a rigorous statistical analysis. We examined the same 
data as earlier studies, which have been the basis of a 
dispute about the values of the parameters in the power 
law, in particular whether the power-law exponent is 
unity or larger. 

We find that most of the data examined are consistent 
with a linear relationship (a power-law exponent of 
unity) between fault displacement and length, and that 
exponents of 1.5 or 2 are clearly inconsistent with the 
data. The results are robust, being based on methods 
which use all of the data simultaneously, covering nearly 
6 orders of magnitude in fault length as well as a separate 
analysis of the individual data sets, and are also not 
affected by the likely imprecision in the original 
measurements. Furthermore, the analysis is not depend- 
ent on, or biased by, the underlying distribution of fault 
sizes. 

Individual data sets may have different intercepts in 
log-log space (corresponding with different slopes for 
the linear relation) and there is a tendency for larger 
faults to have even larger displacements. However, this 
effect is not systematic. 

The statistical treatment presented here, part of which 
considered the combined data in a way that does not 
assume that the data need be homogeneous, clearly 
demonstrates that a unity exponent (i.e. a linear re- 
lation) is most appropriate for individual data sets, 
although the scaling factors differ between the data sets, 
so no single linear relationship is consistent with all data. 

Acknowledgements--We would like to thank Patience Cowie and 
John Walsh for kindly sending us copies of their data. Comments by 
Bill Power, and reviews by Nancye Dawers, Patience Cowie and 
Steven Wojtal helped improve the presentation. This work was largely 
completed during a study-leave visit by RMC to CSIRO in January- 
February 1995. Other support was provided by ARC grant A39031709 
and the Australian Geodynamics Cooperative Research Centre. 

REFERENCES 

Bartlett, M. S. I937. Properties of sufficiency and statistical tests. 
Proc. R. Soc. Lond. AI60, 268-282. 



152 R .M.  CLARK and S. J. D. COX 

Burgmann, R., Pollard, D. D. & Martel, S. J. 1994. Slip distribution 
on faults: effects of stress gradients, inelastic deformation, hetero- 
geneous host-rock stiffness, and fault interaction. J. Struct. Geol. 
16, 1675-1690. 

Burn, D. A. & Ryan, T. A. Jr, 1983. A diagnostic test for lack of fit in 
regression models. Am. Stat. Assn Proc. of Statistical Computing 
Section, 286--290. 

Clark, R. M. & Cox, S. J. D. 1995. Statistical analysis of fault lengths 
and displacements. CSIRO Expl. & Min. Open-file Rep. 140F. 

Cowie, P. A. & Sehoiz, C. H. 1992a. Physical explanation for the 
displacement-length relationship of faults using a post-yield frac- 
ture mechanics model. J. Struct. Geol. 14, 1133-1148. 

Cowie, P. A. & Scholz, C. H. 1992b. Displacement-length scaling 
relationship for faults: data synthesis and discussion. J. Struct. Geol. 
14, 1149-1156. 

Cox, D. R. & Hinkley, D. V. 1974. Theoretical Statistics. Chapman & 
Hall, London. 

Davy, P. 1993. On the frequency-length distribution of the San 
Andreas fault system. J. geophys. Res. 98, 12,141-12,151. 

Elliott, D. 1976. The energy balance and deformation mechanisms of 
thrust sheets. Phil. Trans. R. Soc. Lond. A203, 289-312. 

Filliben, J. J. 1975. The probability plot correlation test for normality. 
Technometrics 17, 111-117. 

Fryer, J. G. & Pethybridge, R. J. 1972. Maximum likelihood esti- 
mation of a linear regression function with grouped data. Appl. Stat. 
21,142-154. 

Kendall, M. G. & Stuart, A. 1973. Advanced Theory of Statistics, Vol. 
2. Griffin, London. 

Krantz, R. W. 1988. Multiple fault sets and three-dimensional strain: 
theory and application. J. Struct. Geol. 10, 225-237. 

Marrett, R. & Allmendinger, R. W. 1991. Estimates of strain due to 
brittle faulting: sampling of fault populations. J. Struct. Geol. 13, 
735-738. 

Marrett, R. & AIImendinger, R. W. 1992. Amount of extension on 
"small" faults: an example from the Viking Graben. Geology 20, 47- 
50. 

Muraoka, H. & Kamata, H. 1983. Displacement distribution along 
minor fault traces. J. Struct. Geol. 5, 483--495. 

Opheim, J. A. & Gudmundsson, A. 1989. Formation and geometry of 
fractures and related volcanism, of the Krafla fissure swarm, north- 
east Iceland. Bull. geol. Soc. Am. 101, 1608-1622. 

Pacheco, J. F. & Scholz, C. H. 1992. Changes in frequency-size 
relationship from small to large earthquakes. Nature 355, 71-73. 

Peacock, D. C. P. 1991. Displacement and segment linkage in strike- 
slip fault zones. J. Struct. Geol. 13, 1025-1035. 

Peacock, D. C. P. & Sanderson, D. J. 1991. Displacement and 
segment linkage and relay ramps in normal fault zones. J. Struct. 
Geol. 13, 721-733. 

Scholz, C. H. & Cowie, P. A. 1990. Determination of total strain from 
faulting using slip measurements. Nature 346, 837-839. 

Villemin, T., Angelier, J. & Sunwoo, C. 1995. Fractal distribution of 
fault length and offsets: Implications of brittle deformation evalu- 
ation - -  the Lorraine Coal Basin. In: Fractals in the Earth Sciences 
(edited by Barton, C. & LaPointe, P.). Plenum Press, New York, 
205-226. ' 

Walsh, J. J. & Watterson, J. 1987. Distribution of cumulative displace- 
ment and of seismic slip on a single normal fault surface. J. Struct. 
Geol. 9, 1039-1046. 

Walsh, J. J. & Watterson, J. 1988. Analysis of the relationship 
between displacements and dimensions of faults. J. Struct. Geol. 10, 
239-247. 

Walsh, J. J. & Watterson, J. 1992. Populations of faults and fault 
displacements and their effects of estimates of fanlt-related regional 
extension. J. Struct. Geol. 14,701-712. 

Walsh, J. J., Watterson, J. & Yielding, G. 1991. The importance of 
small scale faulting in regional extension. Nature 551,391-393. 

Watterson, J. 1986. Fault dimensions, displacements and growth. Pure 
& Appl. Geophys. 124, 366-373. 

Westaway, R. 1994. Quantitative analysis of populations of small 
faults. J. Struct. Geol. 16, 1259-1273. 


